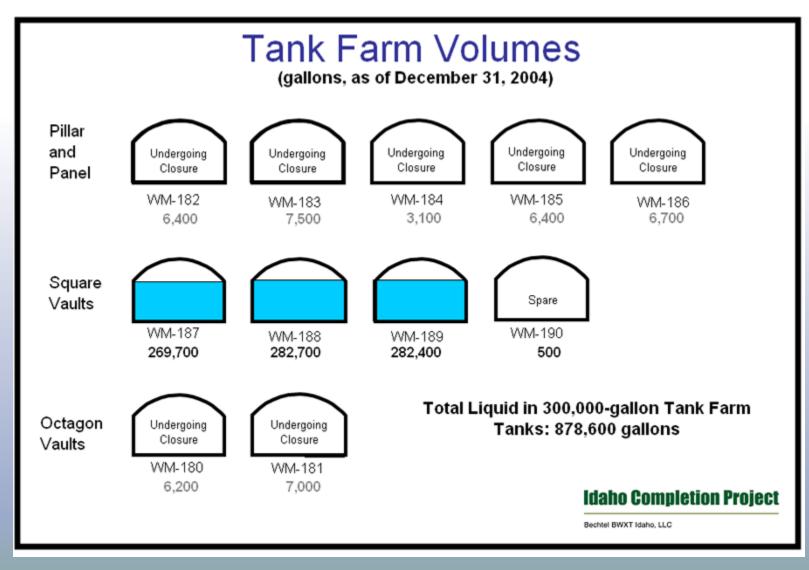


Idaho National Engineering and Environmental Laboratory

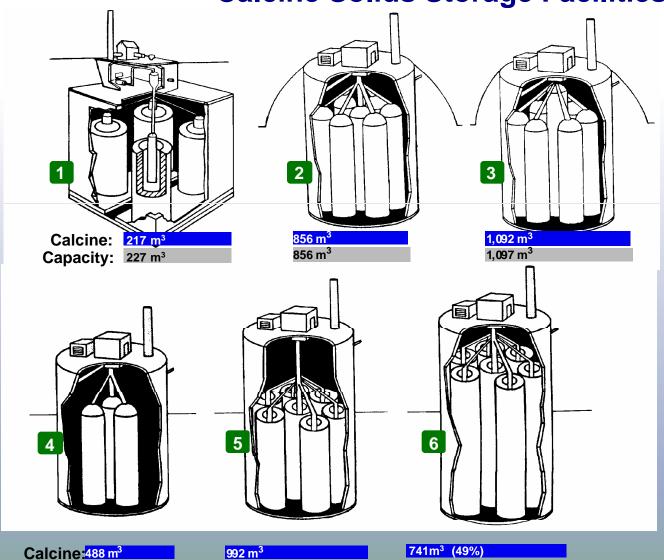
Idaho HLW Overview

T. A. Todd


EMSP HLW Workshop January 19, 2005

High-Level Wastes at the Idaho Site

- Liquid Sodium-Bearing Waste
 - Approx. 3.3 million liters of acidic liquid
 - Currently stored in 3 stainless steel 1.2 million liter underground storage tanks
 - Originated from processing DOE-owned fuel
 - Evaporator bottoms
 - Solvent wash


High-Level Wastes at the Idaho Site

Solid Calcine

- Approx. 4.4 m³ of solid calcine
 - ~20 % from aluminum-clad fuels
 - ~75 % from zircalloy-clad fuels
- Stored in 6 stainless-steel bin sets enclosed in concrete vaults
- Solidified first-cycle raffinate from processing Naval fuels (total element dissolution)
- Calcine is stable waste form, but Cs, Sr are highly leachable

Calcine Solids Storage Facilities

Total: 4386 m³ **Calcine Waste** (as of 5/1/00)

0m³ (00%) 1,784 m³

Capacity:488 m³

992 m³ 992 m³

1,507 m³

Issues related to Idaho Wastes

Sodium-Bearing Waste

- Tanks have never leaked, but are nearing design life (valve boxes, piping have leaked)
- RCRA NoN for corrosive liquid- no secondary containment
- 1995 Settlement agreement mandates waste be "road ready" to leave Idaho by 2012
- Recent WIR lawsuit

Calcine

- Bin sets are designed for 500 yr operation lifetime
- Characterization of calcine difficult due to numerous stratified layers in bins

Treatment Technologies Evaluated

- Sodium-Bearing Waste
 - Numerous separation and direct immobilization technologies evaluated over past decade
 - Downselect to 5 technologies made
 - Calcination
 - Steam Reforming
 - Direct Evaporation
 - Direct Vitrification
 - Cesium removal by ion exchange/ grouting
 - First 4 technologies produce RH waste to WIPP
 - CsIX/grout option produces CH waste to WIPP

Treatment Technologies Evaluated

Calcine

- Numerous separation and direct immobilization technologies evaluated over past decade
- Current path forward is direct packaging in highintegrity canisters and disposal at Yucca mountain
 - No sampling or characterization
 - Use historical model to determine approximate waste composition
 - Calcine without canister is still below level of concern based on repository modeling
 - RCRA and Listed Waste as well as reference borosilicate glass standard for HLW are issues

Technologies Evaluated

- Separation technologies
 - Solvent extraction (TRUEX, SREX, UNEX)
 - Cs Ion Exchange (AMP, CST, Fe(CN)₆)
 - Filtration
- Direct Immobilization
 - Calcination (SBW only)
 - Vitrification
 - Steam reforming (SBW only)
 - Evaporation/Crystallization (SBW only)
 - Ceramic (Calcine only)

Current Activities

Sodium-Bearing Waste

- No project, R&D or evaluation efforts are in progress, pending selection of Idaho Completion Project (ICP)contractor
 - ICP contractor not limited to down-selected technologies in RFP

Calcine

- Limited project efforts on going
- DIAL evaluating alternative thermal treatment and cementatious waste forms

INEEL Site contacts

• ICP

- Robert Miklos, 208-526-4072, miklrp @inel.gov
- Joe Pruitt, 208-526-8089, jcp1@inel.gov

INL

- EM Interface
 - Eric Williams, 208-526-8089, rxw@inel.gov
- Separation technologies:
 - Terry Todd, 208-526-3365, ttodd@inel.gov
- Immobilization technologies:
 - Jay Roach, 208-526-4974, arh@inel.gov

DOE-ID

Joel Case, 208-526-6795, casejt@id.doe.gov